DSA - 230

First Year B.Sc. Degree Examination, Sept./Oct. 2012 (Directorate of Distance Education) MATHEMATICS (Paper – I)

Time: 3 Hours Max. Marks: 90

Note: Answer **any SIX** full questions of the following choosing atleast **ONE** from **each** Part.

PART – A

1.	a) i) Find the GCD of 24 and 32.	2
	ii) Prove that $10! \equiv -1 \pmod{II}$.	2
	b) State and prove Chinese Remainder theorem.	5
	c) Prove that any two nonzero integers a and b have a unique positive GCD and it can be expressed in the form ma+nb, where m,n \in z.	6
2.	a) i) Define equivalence Relation and give an example.	2
	ii) Is the function $f: R \to R$ defined by $f(x) = x^2 \ \forall \ x \in R$ is one-one? Justify your answer.	2
	b) Find the equivalence relation induced by the partition $P = \{(1, 2) (3, 4, 5)\}$ on the set $A = \{1 \ 2 \ 3 \ 4 \ 5\}$.	5
	c) Prove that the set of all rational numbers Q is countable.	6
	PART-B	
3.	a) i) Evaluate $\lim_{x\to 0}$ xsin (1/x).	2
	ii) Find the n^{th} derivative of $y = e^x \cos x$.	2
	b) Discuss the differentiability of $f(x) = x + x-1 $ at $x = 0$ and $x = 1$.	5
	c) If $x = sint$ and $y = cosmt$, prove that $(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} + (m^2 - n^2) y_n = 0$.	6

5

6

2

2

6

2

6

- 4. a) i) Find $\frac{ds}{dt}$ for the curve x = a(t + sint) and y = a(1 cost).
 - ii) Show that the radius of curvature of the curve $pa^2 = r^3$ is $a^2/3r$.
 - b) Show that the pair of curves $r^n = a^n \cos \theta$ and $r^n = b^n \sin \theta$ intersect each other orthogonally.
 - c) Find the evolute of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.

PART-C

- 5. a) i) Find the parametric representation of the line through the points (1, -1, 1) and (2, 3, 0).
 - ii) Verify whether the following planes are parallel.

$$x + y + z - 3 = 0$$

 $2x + 7y + 3z - 5 = 0$

- b) Find the equation of the plane through the point (4, -1, 0) and the line x = t, y = 2t, z = 3t.
- c) Determine the mutual position of lines I₁ and I₂.

$$I_1$$
: $x = 2 - t$, $y = 1 - t$, $z = 1 - 3t$
 I_2 : $x = 3 - 2s$, $y = 4 - s$, $Z = 12 - 2s$.

- 6. a) i) Find the centre and radius of the sphere $x^2 + y^2 + z^2 6x + 8y 10z + 1 = 0$. 2
 - ii) Find the asymptotes parallel to the co-ordinate axes for the curve $x^2y^2 = a^2(x^2 + y^2)$.
 - b) Find all the asymptotes of the curve $3x^3 + 2x^2y 7xy^2 + 2y^3 14xy + 7y^2 + 4x + 5y = 0$.
 - c) Find the surface area of the solid generated by the revolution of the curve

$$x^{2/3} + y^{2/3} = a^{2/3}$$

PART - D

7. a) i) Express the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ as the sum of symmetric and skew symmetric matrices.

2

b) Find the inverse of the matrix A by the elementary transformations

ii) Find the Rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7 \end{bmatrix}$.

 $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}.$

5

2

c) Find the non-trival solution of the system

x + 3y - 2z = 0

2x - y + 4z = 0

x - 11y + 14z = 0.

6

2

2

8. a) i) Evaluate $\int \frac{dx}{1 + \cos x}$

ii) Evaluate $\int e^{x} \left[\frac{1 + \sin x}{1 + \cos x} \right] dx$

5

c) Evaluate $\int_0^1 \frac{\cos x}{\sqrt{1-x^2}} dx$.

b) Evaluate $\int \frac{dx}{x^2 \sqrt{x^2 + 1}}$

6