Q.P. Code - 50825

Third Year B.Sc., Degree Examinations, OCTOBER/NOVEMBER 2016 (Directorate of Distance Education)

(DSC 232) Paper V - MATHEMATICS

Time : 3 Hours] [Max. Marks : 90

Instructions to Candidates:

- 1) Answer any **SIX** of the following.
- 2) Scientific calculator is allowed.

PART - A

- 1. (a) (i) Express $1 + i\sqrt{3}$ in the modulus argument form.
 - (ii) Find the equation of a circle given that centre 3-7i and radius = 8. **2 + 2**
 - (b) Find the equation of straight line through the points $z_1 = 1 2i$, $z_2 = 2 + i$.
 - (c) Find the equation of the circle passing through the points 1-5i, 2+10i, 4-i. **6**
- 2. (a) (i) Find whether the function e^{x+iy} is analytic.

(ii) Prove that the function
$$\frac{1}{2}\log(x^2+y^2)$$
 is harmonic. **2 + 2**

- (b) Find the analytic function whose imaginary part is $\frac{x-y}{x^2+y^2}$.
- (c) If f(z) = u + iv is analytic and $u v = (x y)(x^2 + 4x + y^2)$, find f(z) in terms of z.
- 3. (a) (i) Evaluate $\oint_C \frac{dz}{z-2}$ around the circle |z-2|=4.

(ii) Evaluate
$$\int_{0}^{1+i} z^2 dz$$
. 2 + 2

- (b) If f(z) is analytic within and on a closed contour C and z = a is an interior point of C then prove that $f'(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^2} dz$.
- (c) State and prove fundamental theorem of algebra.

1 **P.T.O.**

6

Q.P. Code - 50825

4. (a) (i) Show that
$$\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = e^x$$
.

(ii) Evaluate:
$$(E+2)(E-1)(e^x+x)$$
.

(b) The following are the numbers of deaths in four successive ten years age groups. Find the numbers of deaths at 45–50 and 50–55.

Deaths: 13229 18139 24225 31496

(c) The following table gives the values of $\sin \theta$ for different values of θ :

$$\theta$$
 0° 10° 20° 30° 40° $\sin \theta$ 0.000 0.1736 0.3420 0.5000 0.6428

Find the value of cos 10°.

6

PART - B

5. (a) (i) Find $L[\cos 3t \sin 2t]$.

(ii) Find
$$L[\sin^2 t]$$
. 2 + 2

(b) Find the Laplace transform of
$$f(t) = \frac{Kt}{P}$$
 for $0 < t < p$ and $f(t+p) = f(t)$.

(c) Evaluate
$$L^{-1}\left[\frac{(s+1)e^{-\pi s}}{s^2+s+1}\right]$$
 as a function of t .

6. (a) (i) Find $L[e^{at}(2t^2-3t+4)]$

(ii) Find
$$L^{-1} \left[\frac{s+2}{s^2 - 4s + 13} \right]$$
.

(b) Solve the integral equation
$$f(t) = at + \int_0^t f(u)\sin(t-u)du$$
.

(c) Solve
$$y'' + y' - 2y = 3\cos 3t - 11\sin 3t$$
 given $y(0) = 0$ and $y'(0) = 6$.

Q.P. Code - 50825

- 7. (a) (i) Prove that $(1 + \Delta)(1 \nabla) \equiv 1$.
 - (ii) Given $u_0 = 1$, $u_1 = 11$, $u_2 = 21$, $u_3 = 28$ and $u_4 = 29$ find $\Delta^4 u_0$.
 - (b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal Rule. 5
 - (c) Using Simpson's $\left(\frac{1}{3}\right)^{\text{rd}}$ rule calculate $\int_{4}^{5.2} \log_e x \, dx$ by dividing the interval into 6 equal parts.
- 8. (a) (i) Evaluate $\int_{0.2}^{1.4} y_x dx$ from the table using Weddle's rule.

 x 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 y_x 0.199
 0.389
 0.565
 0.717
 0.841
 0.932
 0.985

- (ii) Using Picard's method of successive approximation find first approximation of $\frac{dy}{dx} = 1 + xy$ given that y(0) = 0.
- (b) Using Euler's modified method find an approximate value of y for x = 0 (0.2)0.6 for $\frac{dy}{dx} = x + y$ given y = 1 when x = 0.
- (c) Solve $\frac{dy}{dx} = x + y^2$ with initial condition y = 1 when x = 0 for x = 0.2(0.2)0.4, using Runge-Kutta method.