

KUVEMPU UNIVERSITY OFFICE OF THE DIRECTOR DIRECTORATE OF DISTANCE EDUCATION Jnana Sahyadri, Shankaraghatta - 577 451, Karnataka

Phone: 08282-256426; Fax: 08282-256370; Website: www.kuvempuuniversitydde.org E-mails: ssgc@kuvempuuniversity.org; info@kuvempuuniversitydde.org

TOPICS FOR INTERNAL ASSESSMENT ASSIGNMENTS: 2016-17 Course: M.Sc. MATHEMATICS (Previous)

Important Notes: (1) Students are advised to read the separate enclosed instructions before beginning the writing of assignments. (2) Out of 20 Internal Assignment marks per paper, 5 marks will be awarded for regularity (attendance) to Counseling/ Contact Programme classes pertaining to the paper. Therefore, the topics given below are only for 15 marks each paper. Answer all questions. Each question carries 05 marks.

PAPER I: ALGEBRA

- 1. a). Let G be a group in which i. $(ab)^3 = a^3b^3$ ii. $(ab)^5 = a^5b^5$ for all a, b in G. Show that G is abelian.
 - b). Let p be a prime dividing o(G). Show that every sylow p-subgroup of G/K is of the form PK/K, where P is a sylow p-subgroup of G.
 - c). Prove that the product of any two ideals of a ring R is also an ideal of R.
- 2. a). Show by an example that we can have a finite commutative ring in which every maximal ideal need not be prime.
 - b). Let F be a field. If $A = \{(x, y, 0): x, y \in F\}$, $B = \{(0, y, z): y, z \in F\}$ be subspaces of $F^{3}(F)$, find the dimension of the subspace A+B.

c). Obtain the eigen values, eigen vectors and eigen spaces of $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- 3. a). Let T be a linear operator on a vector space V over F. If W_1, W_2, \ldots, W_k are T-invariant subspaces of V, prove that $\sum_{i=1}^{k} W_i$ and $\bigcap_{i=1}^{k} W_i$ are T-invariant subspaces of V.
 - b). If $f(x) \in F[x]$ is irreducible over F, then show that all its roots have the same multiplicity.

PAPER II: Analysis-I

- 1. a) If x, y are real numbers, x > 0, show that there exists a positive integer n, such that x > yb) For any x > 0, and for every positive integer n, show that there exist a unique $y \ni x = y^n$
 - c) Prove that between any two real numbers there exists infinitely many rationals.
- 2. a) A metric space is called separable if it contains a countable dense subset. Show that R^k is separable.
 - b) Let $f:[0,1) \to \mathbb{R}$ be a continuous function and suppose that $\lim_{x\to\infty} f(x)$ exists. Prove that f is uniformly continuous on \mathbb{R} .
 - c) Give an example of an open cover of the segment (0, 1) which has no finite subcover.
- 3. a) If f is a continuous mapping of a metric space X into metric space y, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.
 - b) A uniformly continuous function of a uniformly continuous function is uniformly continuous.
 - c) Suppose α increases on [a, b], $a \le x_0 \le b$, α is continuous at x_0 , $f(x_0) = 1$, and $f(x_0) = 0$ if $x \ne x_0$. Prove that $f \in R(\alpha)$ and that $\int f d\alpha = 0$.

PAPER III: ANALYSIS-II

- 1.a) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
 - b) Let (f_n)[∞]_{n=1} be a sequence of continuous functions which converges uniformly to a function f on a set E.
 Prove that lim_{n→∞} f_n(x_n) = f(x) for every sequence of points x_n ∈ E. such that x_n → x and x ∈ E. Is the converse of this true?
- 2.a) suppose $\{f_n\}, \{g_n\}$ are defined on E and (i) $\sum f_n$ has uniformly bounded partial sums

```
(ii) g_n \rightarrow \mathbf{0} uniformly on E
```

 $g_{1(x)} \ge g_{2(x)} \ge g_{3(x)} \ge \cdots$ for every $x \in E$. Prove that $\sum f_n g_n$ converges uniformly on E.

b) Prove that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges uniformly in every bounded interval,

but does not converges absolutely for any value of x.

- 3.a) If the partial derivatives f_x and f_y exists and are bounded in a region $R \subset R^2$, then show that f is continuous in R.
 - b) Take m = n = 1 in the implicit function theorem and interpret the theorem graphically.

PAPER 1V: DIFFERENTIAL EQUATIONS

- 1.a) Explain the method of variation of parameters to find the solution of second order nonhomogeneous equations of the form $y'' + a_1y' + a_2y = b(x)$.
- b) Find the solution of i) $y'' + y = \cos x$ ii) $y'' + 4y' - 5y = e^{2x}$

2.a) Find the solution of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \sin x$, y(0) = 0, $y^1(0) = 1$ using Laplace transform method.

- b) Find the integral surface of linear partial differential equation $x(y^2 + z) y(x^2 + z)q = (x^2 y^2)z$ which passes through the straight line x + y = 0, z = 1.
- 3.a) Reduce the partial differential equation $x^2 \frac{\partial^2 z}{\partial x^2} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \sin(x)\log(y)$ in to its canonical form.
 - b) Obtain the solution of the partial differential equation $u_{xx} + u_{yy} = 0$, $0 \le x \le a, 0 \le y \le b$ when subjected to the boundary conditions $u(0, y) = f_1(y)$, $u(a, y) = f_2(y)$, $u(x, 0) = g_1(x)$, $u(x, b) = g_2(x)$.
